
The Next 700 Syntactical Models of Type Theory

Simon Boulier Pierre-Marie Pédrot Nicolas Tabareau
Inria, France

firstname.name@inria.fr

Abstract
A family of syntactic models for the calculus of construc-
tion with universes (CCω) is described, all of them preserv-
ing conversion of the calculus definitionally, and thus giving
rise directly to a program transformation of CCω into itself.
Those models are based on the remark that negative type
constructors (e.g., dependent product, coinductive types or
universes) are underspecified in type theory—which leaves
some freedom on extra intensional specifications. The model
construction can be seen as a compilation phase from a com-
plex type theory into a simpler type theory. Such models
can be used to derive (the negative part of) independence
results with respect to CCω , such as functional extensional-
ity, propositional extensionality, univalence or the fact that
bisimulation on a coinductive type may not coincide with
equality. They can also be used to add new principles to
the theory, which we illustrate by defining a version of CCω
with ad-hoc polymorphism that shows in particular that para-
metricity is not an implicit requirement of type theory. The
correctness of some of the models/program transformations
have been checked in the COQ proof assistant and have been
instrumented as a COQ plugin.

Categories and Subject Descriptors F.4.1 [MATHEMATI-
CAL LOGIC AND FORMAL LANGUAGES]: Mathematical
Logic

Keywords Dependent type theory, Program translation

1. Introduction
“Can we prove that ∀x. f x = g x → f = g ?”, “What
is the difference between P ↔ Q and P = Q, when P
and Q are two propositions?”, “Can we prove that a term
of type ∀A.A → A is necessarily the identity function?”.
Those simple questions are frequently asked to someone
who starts teaching the use of a theorem prover based on type

theory such as COQ (The COQ Development Team 2015)
or AGDA (The AGDA Development Team 2015). However,
the definitive answer to those questions is far from being
simple as it involves proving the consistency of a type theory
augmented with some logical principles or their negation.

Traditionally, given a type theory described as a syntactic
object, there are two ways to justify it.

1. The most standard one, coming all the way back from
model theory, consists in building a model of it, usu-
ally into set theory or a given categorical structure. This
amounts formally to translating the syntax into some
well-behaved quotient. See e.g. (Werner 1997).

2. The most syntactical one consists in showing some good
properties of the syntax, usually strong normalization and
subject reduction, so as to derive the desired properties on
the type theory.

Each approach suffers from its own set of defects. Mod-
els of dependent type theory have been widely studied from
a set theoretic point of view (see (Hoffman 1997) for a gen-
eral overview), giving rise to several families of models, e.g.,
categories with families (Dybjer 1996), comprehension cat-
egories (Jacobs 1993), . . . But all those models of a type the-
ory are built into some other fundational theory, putting back
the burden on the consistency on the latter. This is unavoid-
able, because of the incompleteness theorem, and may be
actually seen as an advantage when targeting such a stress-
tested theory as set theory. Nonetheless, the discrepancy be-
tween the source theory and the target theory can be at the
root of subtle but very important mismatches. This is typi-
cally seen when considering the decidability of conversion
which may hold in the source theory, but is lost as soon as
objects are interpreted semantically.

Going the syntactical way is not without issues either,
as the proofs are often very tedious, not modular, and keep
repeating themselves between close flavours of type theory.

In this paper, we advocate for a third alternative approach,
based on a proof-as-program interpretation of type theory,
which can somehow be seen as a reconciliation of the two
aforementioned kinds of justification.

“To justify a complex type theory, it suffices to compile it
into a simpler—already justified—type theory.”

Modified Type Name of the translation New principles Translation

Πx : A.B Intensional functions (ext) ¬ functional extensionality [[Πx : A.B]] := (Πx : [[A]]. [[B]])× B

Intensional functions (int) ¬ functional extensionality [[Πx : A.B]] := Πx : [[A]]. [[B]]× B

stream A Intensional streams ¬ stream extensionality [[stream A]] := stream [[A]]× B

∗ Ad-hoc intensional propositions ¬ propositional extensionality [[∗]] := ∗ × B

�i Ad-hoc intensional types ¬ univalence [[�i]] := �i × B

Ad-hoc Polymorphism (quote) à la Lisp [[�i]] := TYPEi (inductive-recursive type)

parametricity Built-in parametricity [[�i]] := λ(A0 A1 : �i). A0 → A1 → �i

Functional Reactive Programming General Fixpoints [[�i]] := stream �i

Forcing over P (depending on P) more complicated, see (Jaber et al. 2016)

Figure 1. Different Translations of CCω

Essentially, we follow the model approach, but instead of
targeting an alien system, we use type theory itself and can
thus rely on the consistency of it, proved in a syntactical
manner. Furthermore, contrarily to recent models of type
theory into itself (Chapman 2009; Altenkirch and Kaposi
2016), we do not describe the source theory as a deep em-
bedding in the target one, but rather use a shallow embedding
where all source proofs are translated into the target sys-
tem in a way that preserves most of the structure. This is no
more than the dependently typed counterpart of more stan-
dard logical translations seen as program translations, e.g.
Lafont-Streicher-Reus CPS (Lafont et al. 1993) is the pro-
gramming language equivalent of some variant of Gödel’s
double-negation translation.

This way, several properties from the target theory are in-
herited for free, as long as the program transformation pre-
serves conversion of the calculus definitionally and that the
empty type ⊥ (encoded here as ΠA : �i. A) is translated
into some type equivalent to ⊥. This provides a very simple
notion of model of type theory, accessible to a broader audi-
ence than specialists of category theory and set theory, which
can be used to quickly answer if an axiom is derivable.

As said, such translations can not be used directly to
prove the consistency of the type theory under consideration,
and rely on the consistency of the base type theory itself.
But they can rather be used to study some properties of type
theory enriched with new principles. This approach is in
accordance with the recent work on forcing in type theory
(Jaber et al. 2012, 2016) and parametricity in type theory
(Bernardy et al. 2010; Bernardy and Moulin 2012), which
can both be seen as particular cases of the general picture
described in this paper.

We provide several translations in this paper. They are
based on the remark that negative type constructors (e.g.,
dependent product, coinductive types or universes) are un-
derspecified in type theory—which leaves a lot of freedom
on extra intensional specifications. Such translations can be

used to derive a new type theory where (the negative part of)
independence results can be proven, such as functional ex-
tensionality, propositional extensionality, univalence or the
fact that bisimulation on a coinductive type may not coincide
with equality (that will be called here “stream extensional-
ity”).

It has to be noticed that obtaining similar results using
set-theoretic models is very tedious. Indeed, although most
available models negate univalence, finding a model that
negates functional extensionality or propositional extension-
ality is much more difficult as those principles are hardcoded
in set theory. It becomes even harder when it comes to mod-
els integrating coinductive types, as such model are based
upon the notion of final coalgebra and analysing the connec-
tion between bisimilulation and equality in this setting is a
very complex task.

Type-theoretic translations can also be used to add new
principles to the theory, which we illustrate by defining a
version of a type theory with ad-hoc polymorphism (i.e.,
enriched with the (quote) operator of Lisp) that shows in
particular that parametricity is not an implicit requirement
of type theory.

The systems we study are built upon CCω , a type theory
featuring only dependent products and a denumarable hier-
archy of universes �i.

Contributions. There are a handful of program translations
in type theory (starting from the subset model of (Hofmann
1997)), but they are usually not presented as such. This is
why we believe that giving a proper account of them is
worthwhile, as it permits to exhibit the nice properties of
those models, most notably the preservation of computation.
We also hope to popularize such a way of building models.

In this paper, we provide the following contributions,
which are summarized in Figure 1:
• we provide a general approach to defining translations of

CCω into itself by adding more intensional properties to
negative types

• we apply it to dependent products to show formally that
functional extensionality is not derivable in intensional
type theory
• we apply it to coinductive types to show that bisimilarity

of streams does not imply in general equality of streams
• we apply it to the universe, by using a presentation à la

Tarski, to show that univalence and even propositional
extensionality are not derivable in CCω

• finally, we introduce a more complex interpretation of
universes using induction-recursion to equip CCω with
ad-hoc polymorphism and a quote operator

Coq Formalization. The correctness of the first three pro-
gram translations have been checked in the COQ proof assis-
tant and have been instrumented as a COQ plugin. They have
been developed using the 8.5 release of COQ (The COQ De-
velopment Team 2015) and are available at:

https://github.com/CoqHott/Program-translations-CC-omega

2. Overview
The systems we study in this paper are built upon CCω , a
type theory featuring only dependent products, also known
as Π-types. It features a denumerable hierarchy of universes
�i, and is a close relative to Luo’s ECC (Luo 1989).

Definition 1 (Typing system). We define two statements
mutually recursively as usual. The statement ` Γ means
that the environment Γ is well formed, while Γ ` M : A
means that the term M has type A in environment Γ. The
typing rules are given in Figure 2. � stands for any �i or the
impredicative universe ∗ when it is considered.

Before exposing specific translations between type theo-
ries, we sketch the general schema followed by those trans-
lations. Given two type theories, the source theory S and the
target theory T , we require that any term t in S is translated
into a term [t] in T by induction over the syntax of t, and
that there is an internal operation ι which coerces a trans-
lated type into a type of the target type theory. We write [[A]]
for ι [A]. Note that the induced type may live in a bigger
universe, we will use this fact in Section 5.2. The context is
then translated pointwise as:

[[·]] := ·

[[Γ, x : A]] := [[Γ]], x : [[A]]

The expected theorem is typing soundness which states
that [[Γ]] ` [M] : [[A]] whenever Γ `M : A. This requires in
particular to show a form of computational soundness which
says that [M] ≡ [N] whenever M ≡ N in order to inter-
pret the conversion rule transparently as another conversion.
Another expected property of the translation is consistency
preservation, saying that the translation of ΠX : �i. X is
not inhabited. Typing soundness together with consistency

preservation ensures consistency of the source theory pro-
vided consistency of the target theory.

We argue that this approach is strictly sharper than the
various notions of models from the literature. First, the trans-
lation is only defined by induction on raw syntax, i.e. it does
not depend on any typing assumption and is purely local.
Furthermore, preservation of conversion gives a first-class
treatment of computation even in an untyped setting. Fi-
nally, the target is pure type theory, so that every assumption
needed to make the soundness proofs go through has to be
internal, meaning that one cannot rely on pushing back side-
conditions in the metatheory. We call this approach monistic,
in the sense that it only requires type theory as foundations.
Although a few instances of models of type theory from the
literature can be described in this formalism, most of them
cannot, and even those which can are typically not presented
this way and rely on an intermediate structure such as cate-
gories with families or sets. Examples of models which are
syntactical but not program translations include the setoid
models of (Hofmann 1997) and (Altenkirch 1999). Amongst
the few members of our class of models, one can cite the
subset type (Paulin-Mohring 1989) and parametricity trans-
lations (Bernardy and Lasson 2011), which are quite similar,
as well as the call-by-name forcing translation (Jaber et al.
2016).

The source theory S may contain more type constructors
or logical properties than T as long as there is a term in T
corresponding to the translation of those new type construc-
tors or logical properties. In practice, S is often T + axiom
and the translation ensures that the axiom can be assumed
consistently. In this case, we also have a trivial translation
from T to T + axiom (the injection) and hence the two theo-
ries are equiconsistent. Computational soundness can some-
times be refined so that we can deduce strong normalization
for S from strong normalization for T , although we will not
describe this here. This is done by analyzing the preservation
of reduction steps rather than mere conversion.

In all the translations presented in this paper, we use the
fact that inhabitants of negative types can only be partially
observed from the outside. For instance, dependent functions
can only be observed using application. In the same way,
types can only be observed on a right-hand side of a typing
judgment, which means that the translation only depends on
[[A]] and is oblivious to any additional data contained in [A].

Figure 1 summarizes how this general scheme can be
applied to various extensions of CCω to give a computa-
tional meaning to new principles available in those exten-
sions. Those translations are presented in this paper, but for
parametricity (already described in (Bernardy and Moulin
2012)) and for functional reactive programming and forc-
ing which have already been described in (Jaber et al. 2012,
2016)—the former being a particular case of the latter be-
cause stream A ' N → A corresponds to forcing on the

https://github.com/CoqHott/Program-translations-CC-omega

Γ,∆ ::= · | Γ, x : A

A,B,M,N ::= �i | x |M N | λx : A.M | Πx : A.B

` Γ i < j

Γ ` �i : �j

Γ ` A : �i Γ, x : A ` B : �j

Γ ` Πx : A.B : �max(i,j)

Γ, x : A `M : B Γ ` Πx : A.B : �

Γ ` λx : A.M : Πx : A.B

Γ `M : Πx : A.B Γ ` N : A

Γ `M N : B{x := N}

Γ `M : B Γ ` A : �

Γ, x : A `M : B

` ·

Γ ` A : �

` Γ, x : A

Γ ` A : �

Γ, x : A ` x : A

Γ `M : B Γ ` A : � Γ ` A ≡ B

Γ `M : A

(λx : A.M) N ≡M{x := N} (congruence rules ommitted)

Figure 2. Typing rules of CCω

pre-order of natural numbers. Those translations can be com-
posed to add different principles together.

Extensions. Depending on the translation, we will use var-
ious extensions of the base CCω system, and we will refer
to them explicitely when needed. Those extensions are sum-
marized in Figure 3. They feature an impredicative sort ∗,
as it exists in COQ, that will be used to distinguish between
propositional extensionality and univalence. To reason about
equality in CCω , we use Martin-Löf identity type, that is
typed in �i (but it could be typed in ∗ as in COQ). We may
need booleans and negative pairs, also known as Σ-types,
with projections1 and, in one case, surjective pairing.

Plan of the paper. In Section 3, we give a first translation
that acts on dependent products in order to realize the nega-
tion of functional extensionality. This shows for instance that
this principle is not provable in CCω . In Section 4, we show
that a similar translation can be done on streams in order to
negate the principle of stream extensionality. In Section 5,
we provide two translations, one that negates univalence and
even propositional extensionality and one that introduces a
notion of ad-hoc polymorhism in the form of a (quote) op-
erator à la Lisp. In Section 6, we show how some transla-
tions have been formalized in the COQ proof assistant and
describe the COQ plugins that implement those translations.

3. Intensional Functions
In this section, we present a translation that augments ev-
ery dependent function with a boolean value that cannot be
seen externally as the only way to observe a function is by
applying it, which forgets about the boolean value. In this
translation, every function coming from a translated term of
CCω will be equipped with the value true.

1 We do not use a more general form of dependent elimination to simplify
the theoretical development in this paper.

Definition 2. The intensional function translation [·]f from
CCω to CCω + Σ + B is defined by induction on terms as
follows.

[�i]f := �i

[x]f := x

[λx : A.M]f := (λx : [[A]]f . [M]f , true)

[M N]f := π1 [M]f [N]f

[Πx : A.B]f := (Πx : [[A]]f . [[B]]f)× B

[[A]]f := [A]f

Note that [[A]]f := [A]f , which means that for this trans-
lation, ιf is the identity function, which is possible because
[�i]f := �i.

Proposition 3 (Substitution lemma). For all terms M , N
and any variable x we have

[M{x := N}]f ≡ [M]f{x := [N]f}

Proof. By induction on M .

Using the substitution lemma, it is not difficult to derive
the two main properties of the translation.

Theorem 4 (Computational soundness). If M ≡ N then
[M]f ≡ [N]f .

Proof. The only non-trivial case is the β-reduction rule,
which is proved by the following rewriting steps.

[(λx : A.M) N]f := π1 ((λx : [[A]]f . [M]f), true) [N]f
≡ (λx : [[A]]f . [M]f) [N]f
≡ [M]f{x := [N]f}
≡ [M{x := N}]f

All congruence rules are interpreted as-is.

Theorem 5 (Typing soundness). If Γ ` M : A then
[[Γ]]f ` [M]f : [[A]]f .

Impredicative Universe

A,B,M,N ::= . . . | ∗

` Γ

Γ ` ∗ : �i

Γ ` A : � Γ, x : A ` B : ∗

Γ ` Πx : A.B : ∗

Negative Pairs

A,B,M,N ::= . . . | Σx : A.B | π1 M | π2 M | (M,N)

Γ ` A : �i Γ, x : A ` B : �j

Γ ` Σx : A.B : �max(i,j)

Γ `M : A Γ ` N : B{x := M}

Γ ` (M,N) : Σx : A.B

Γ `M : Σx : A.B

Γ ` π1 M : A

Γ `M : Σx : A.B

Γ ` π2 M : B{x := π1 M}

π1 (M,N) ≡M π2 (M,N) ≡ N (π1 M,π2 M) ≡M

Booleans

A,B,M,N ::= . . . | B | true | false | ifM ret P then N1 else N2

Γ `M : B Γ ` P : B→ �i Γ ` N1 : P true Γ ` N2 : P false

Γ ` ifM ret P then N1 else N2 : P M

` Γ

Γ ` B : �i

` Γ

Γ ` true : B

` Γ

Γ ` false : B

if true ret P then N1 else N2 ≡ N1 if false ret P then N1 else N2 ≡ N2

Equality

A,B,M,N ::= . . . | reflx | x =A y | J(P, e, t)

` Γ Γ ` A : �i Γ ` t, t′ : A

Γ ` t =A t′ : �i

Γ ` t : A

Γ ` reflt : t =A t

Γ ` e : t =A t′ Γ, y : A, q : t =A t′ ` P : �i Γ ` u : P{y := t}{q :=reflt}

Γ ` J(P, e, u) : P{y := t′}{q := e}

J(P, reflt, u) ≡ u

Figure 3. Extensions to CCω

Proof. By induction on the typing derivation. The only non-
trivial cases are the conversion rule which is interpreted by
the above theorem, and rules manipulating products which
are easily proved.

This translation can account for various extensions of
CCω in a straightforward fashion. For instance, we can in-
terpret inductive datatypes functorially, even though we will
not describe it here. In the end of this section, we assume we
have at our disposal equality.

Theorem 6 (Consistency preservation). The translation pre-
serves consistency.

Proof. Indeed, we have

[[ΠA : �i. A]]f := (ΠA : �i. A)× B

which is inhabited if and only if ΠA : �i. A is.

While being quite simple, this syntactical model already
implements strictly more than just CCω . Thanks to the ad-
ditional boolean worn by functions, it becomes possible to

[stream A]s := stream [[A]]s × B

[hdM]s := hd (π1 [M]s)

[tlM]s := (tl (π1 [M]s), π2 [M]s)

[stream_corec S M0 M1 N]s :=

(stream_corec [S]s [M0]s [M1]s [N]s, true)

[bisim AM N]s := bisim [[A]]s (π1 [M]s) (π1 [N]s)

[hdb M]s := hdb [M]s

[tlb M]s := tlb [M]s

[bisim_corec S M0 M1 P0 P1 N]s :=

bisim_corec
(λs0 s1. [S]s (s0, (π2 [P0]s)) (s1, (π2 [P1]s)))
(λs0 s1 s. [M0]s (s0, (π2 [P0]s)) (s1, (π2 [P1]s)) s)
(λs0 s1 s. [M1]s (s0, (π2 [P0]s)) (s1, (π2 [P1]s)) s)
(π1 [P0]s) (π1 [P1]s) [N]s

[. . .]s := . . .

[[A]]s := [A]s

Figure 4. Definition of the intensional stream translation

discriminate between two functions which are extensionally
equal, thus negating functional extensionality. For the rest of
this section we add identity types (Figure 3) in source and
target theories. The translation extends directly by functori-
ality.

Theorem 7. We define functional extensionality funext as
follows.

funext := Π(A : �) (B : �) (f g : A→ B).
(Πx : A. f x =B g x)→ f =A→B g

Then there is, in the target system, a closed proof of
[[funext→ ⊥]]f .

Proof. It is sufficient to instantiate in the premise A and
B by some arbitrary type X and f and g respectively by
(λx : X.x, true) and (λx : X.x, false). This immedi-
ately leads to a proof that true = false by injection and
thus a contradiction.

Almost every model of CCω , if not all, validates funext,
so it is consistent with CCω . The previous theorem shows
that it is not provable in CCω .

Corollary 8. funext is independent from CCω .

It is possible to define a similar translation by adding
the boolean value “inside” the function [Πx : A.B]f :=
Πx : [[A]]f . [[B]]f × B. This translation is very similar so
we do not present it in detail.

4. Intensional Coinductive Types
We now enrich our source theory with coinductive datatypes,
and by using a translation similar to the one of intensional

functions, we obtain in a straightforward way a variant for
intensional streams. Using intensional streams, it is possible
to prove that stream extensionality (the fact that bisimilarity
coincides with equality for streams) is not provable in CCω .

Streams. We assume that our source and target theory are
equipped with a type of streams and a relation of bisimilarity,
defined in Figure 5. Given a stream M , it is possible to get
its first element (or head) by using the destructor hdM and
to get its tail by using the destructor tl M . The only way
to create a stream is by coinduction2 using the constructor
stream_corec which produces, for any type S, a map from
S to stream A given a map S → A and a map S → S.
Bisimilarity of streams is defined similarly.

The translation for intensional streams works by adding
a boolean value to every stream, throwing it away when
accessing the head, and threading it when accessing the tail.

Definition 9. The intensional stream translation [·]s from
CCω + stream into CCω + Σ + B + stream is defined by
induction on terms as defined in Figure 4, where unspecified
cases are defined by commutation of the translation with the
corresponding syntax constructor.

The properties satisfied by [·]s are the same as for inten-
sional functions, the proof arguments being similar.

Theorem 10 (Typing soundness). Assuming definitional
surjective pairing in the target, if Γ ` M : A then
[[Γ]]s ` [M]s : [[A]]s.

Proof. Essentially the same as for the functional case. Con-
version is once again interpreted as conversion, as the sub-
stitution lemma is trivial. We only need surjective pairing in
order to show that [N]s is well-typed in the interpretation of
bisim_corec, otherwise all rules are straightforward.

Remark 11. The requirement of surjective pairing can be
lifted by defining a new dedicated coinductive type in the
target system. We choose instead to reuse the same notion
of bisimilarity for the sake of conceptual simplicity at the
expense of a stronger requirement on the target system.

Even more directly than for dependent functions, falsity
is translated into itself because the translation does not act
on dependent products, so that we can derive consistency
preservation directly.

Theorem 12 (Consistency preservation). The translation
preserves consistency.

As coinductive types are negatives types, the only way to
observe them is by using their destructors, which for the case
of streams amounts to observing only the head and the tail of
a stream (coinductively). Thus, intensional streams allow to

2 Coinductive types are defined categorically as terminal coalgebras, so their
universal property can be used to construct maps going into them. This
corresponds to the coinduction principle.

A,B,M,N ::= . . . | stream A | hdM | tlM | stream_corec S M0 M1 N
| bisim AM N | hdb M | tlb M | bisim_corec S M0 M1 P0 P1 N

Γ ` S : �i Γ `M0 : S → A Γ `M1 : S → S Γ ` N : S

Γ ` stream_corec S M0 M1 N : stream A

Γ ` S : stream A→ stream A→ �i Γ `M0 : T0 Γ `M1 : T1 Γ ` N : S P0 P1

Γ ` bisim_corec S M0 M1 P0 P1 N : bisim A P0 P1

where T0 := Π(s0 s1 : stream A). S s0 s1 → hd s0 =A hd s1

T1 := Π(s0 s1 : stream A). S s0 s1 → S (tl s0) (tl s1)

Γ ` A : �i

Γ ` stream A : �i

Γ ` A : �i Γ `M : stream A Γ ` N : stream A

Γ ` bisim AM N : �i

Γ `M : stream A

Γ ` hdM : A

Γ `M : stream A

Γ ` tlM : stream A

Γ `M : bisim A N1 N2

Γ ` hdb M : hd N1 =A hd N2

Γ `M : bisim A N1 N2

Γ ` tlb M : bisim A (tl N1) (tl N2)

hd (stream_corec S M0 M1 N) ≡M0 N tl (stream_corec S M0 M1 N) ≡ stream_corec S M0 M1 (M1 N)

hdb (bisim_corec S M0 M1 P0 P1 N) ≡M0 P0 P1 N

tlb (bisim_corec S M0 M1 P0 P1 N) ≡ bisim_corec S M0 M1 (tl P0) (tl P1) (M1 P0 P1 N)

Figure 5. Coinductive types

negate stream extensionality by comparing two streams that
share the same elements, but differ on the additional boolean
value. As previous, the translation extends to identity types
and we have:

Theorem 13. We define stream extensionality streamext

as follows.

streamext := Π(A : �) (s1 s2 : stream A).
bisim A s1 s2 → s1 =stream A s2

Then there is in the target system a closed proof of
[[streamext→ ⊥]]s.

Proof. Once again, as in the functional case, intensional
equality observes the boolean in the translated streams but
bisimilarity does not.

5. Intensional Types
In this section, we exploit the underspecification of types
in CCω to give more content to types. Our first translation
builds upon the · × B trick we used in the previous sections,
but our second translation is much more subtle as it allows
to implement ad-hoc polymorphism in vanilla type theory.

5.1 Ad-hoc intensional types
We define here a translation giving a very naive intensional
content to types. Just as we did in the function case, we
enrich every type with a boolean which is not observable
in the source theory, except for intensional equality.

Definition 14. The ad-hoc intensional type translation [·]t
from CCω to CCω + Σ +B is defined by induction on terms
as follows.

[�i]t := (�i × B, true)

[x]t := x

[λx : A.M]t := λx : [[A]]t. [M]t

[M N]t := [M]t [N]t

[Πx : A.B]t := (Πx : [[A]]t. [[B]]t, true)

[[A]]t := π1 [A]t

As in previous sections, the translation verifies the substi-
tution lemma and computational soundness, from which we
derive:

Theorem 15 (Typing soundness). If Γ ` M : A then
[[Γ]]t ` [M]t : [[A]]t.

Proof. By induction on the typing derivation of Γ ` M :
A. The only interesting cases are the two rules for type
constructors.
1. Case �i : �j . Direct from the fact that

(�i × B, true) : �j × B

2. Case Πx : A.B : �j . Direct from the fact that

(Πx : [[A]]t. [[B]]t, true) : �i × B

Theorem 16 (Consistency preservation). The translation
preserves consistency.

Proof. This comes immediately from the fact that

[[ΠA : �i. A]]t := ΠA : �i × B. π1 A

which is inhabited if and only if ΠA : �i. A is

Proposition 17. The above translation can easily accomo-
date the presence of an impredicative universe ∗ as long as
there is one in the target system, by defining

[∗]t := (∗ × B, true).

The rules for an impredicative universe from Figure 3 are
valid with this interpretation.

More generally, the translation can be extended to any
type former Φ which is not a universe by defining

[Φ (M1, . . . ,Mn)]t := (Φ ([M1]t, . . . , [Mn]t), true).

In the remainder of this section, we assume that we have an
equality and an empty type and their translations at hand.

Theorem 18. We define propositional extensionality as:

propext := Π(AB : ∗). (A→ B)→ (B → A)→ A =∗ B.

There is in the target system a proof of [[propext→ ⊥]]t.

Proof. Just as in the functional extensionality proof, it is suf-
ficient to takeA andB to be the same underlying proposition
X , but with a different boolean.

Using the validity of propositional extensionality in the
set model (Werner 1997), we get the independence of propo-
sitional extensionality with CCω .

In the same way, it is possible that the negation of univa-
lence holds in the source theory. Using the validity of univa-
lence in the simplicial model of (Kapulkin et al. 2012), we
conclude that univalence is independent from CCω .

5.2 Ad-hoc polymorphism
In this section, we push the concept of type intensional-
ity into its utmost consequencies, namely by showing that
there exists a syntactic model of type theory interpreting a
quoting operator on types. Such an operator allows to do
case-analysis on the normal form of any type in the theory,
which proves that ad-hoc polymorphism is actually compat-
ible with usual type theory. Although this result looks sur-
prising, the model is actually quite straightfoward to obtain
as soon as the target theory is expressive enough.

We will assume here that our target theory features
induction-recursion, and we will use it to define the type
of codes (as in (Dybjer 2000)).

Definition 19 (Codes). We define a family of inductive-
recursive definitions TYPEi and Elti where i ranges over N
as follows, using a suggestive syntax.

Inductive TYPE0 : �1 :=
| Π0

0 : ΠA : TYPE0. (Elt0 A→ TYPE0)→ TYPE0

with Elt0 : TYPE0 → �0 := fun

| Π0
0 A B ⇒ Πx : Elt0 A. Elt0 (B x)
. . .

Inductive TYPEi+1 : �i+2 :=
| Ui : TYPEi+1

| Π0
i+1 : ΠA : TYPE0. (Elt0 A→ TYPEi+1)→ TYPEi+1

| . . . : . . .
| Πi+1

i+1 : ΠA : TYPEi+1. (Elti+1 A→ TYPEi+1)→ TYPEi+1

with Elti+1 : TYPEi+1 → �i+1 := fun

| Ui ⇒ TYPEi
| Π0

i+1 A B ⇒ Πx : Elt0 A. Elti+1 (B x)
| . . . ⇒ . . .
| Πi+1

i+1 A B ⇒ Πx : Elti+1 A. Elti+1 (B x)

The typing and reduction rules generated by these def-
initions are formally given in Figure 6. These inductive-
recursive types respect the usual positivity conditions and
thus do not endanger the consistency of the target system.

There are several points to discuss about codes. First, the
definition of codes makes a closed-world assumption on the
type constructors from the source theory. Furthermore, as
codes reflect faithfully the various operations at our disposal
in the source theory, we actually need to hardwire the uni-
verse hierarchy in the inductive-recursive definitions by ex-
ternally quantifying over the index i ∈ N. In order not to
make the translation even more complex as it is, we simplify
a bit the authorized type formers to prevent a combinatorial
explosion. Most notably, the codes for product must be du-
plicated as many times as there are valid combinations of
sorts for it.

It is interesting to remark that the resulting model suf-
fers from an expressivity limitation directly linked to the
inductive-recursive construction, that is, it cannot interpret
an impredicative universe. This would obviously entail a
non-wellfounded loop in the definition of codes, because
∗ : �0 but all quantifications targetting ∗ would have to refer
to every TYPEi defined afterwards.

In order to define the translation, we need to know the
universe level at which a term is being typed at each induc-
tive step. Therefore, we will use as a source system CCιω ,
a variant of CCω which is slightly less expressive but well
stratified, defined in Figure 7. It would probably be possible
to adapt the translation to the full-blown CCω system, at the
cost of a more involved translation. Essentially, the main dif-
ference is that we annotate both the sequent and the variables
from the context with the level of their expected sort. We
will omit the indices when they are uniquely defined from
the context.

Proposition 20. CCιω is a subsystem of CCω .

Proof. It is indeed sufficient to erase all level annotations on
colons to translate a well-typed CCιω term into a well-typed
CCω term.

A,B,M,N ::= . . . | TYPEi | Elti | Ui | Πji | TYPE_reci

` Γ

Γ ` TYPEi : �i+1

` Γ

Γ ` Elti : TYPEi → �i

` Γ

Γ ` Ui : TYPEi+1

` Γ j ≤ i

Γ ` Π
j
i : ΠA : TYPEj . (Eltj A→ TYPEi)→ TYPEi

` Γ

Γ ` TYPE_rec0 : ΠP : TYPE0 → �j . PΠ0 → ΠA : TYPE0. P A

` Γ

Γ ` TYPE_reci+1 : ΠP : TYPEi+1 → �j . P Ui → PΠ0
i+1
→ . . . → PΠi

i+1
→ PΠi+1 → ΠA : TYPEi+1. P A

where PΠi := Π(A : TYPEi) (B : Elti A→ TYPEi). P A→ (Πx : Elti A.P (B x))→ P (Πii A B)

P
Π

j
i

:= Π(A : TYPEj) (B : Eltj A→ TYPEi). (Πx : Eltj A.P (B x))→ P (Πji A B)

Elti (Πji A B) ≡ Πx : Eltj A. Elti (B x)
Elti+1 Ui ≡ TYPEi
TYPE_rec0 P pΠ (Π0

0 A B) ≡ pΠ (TYPE_rec0 P pΠ A) (λx : Elt0 A. TYPE_rec0 P pΠ (B x))
TYPE_reci+1 P pU pΠ0 . . . pΠi+1 Ui ≡ pU
TYPE_reci+1 P pU pΠ0 . . . pΠi+1 (Πji+1 A B) ≡ pΠj A B

(λx : Eltj A. TYPE_reci+1 P pU pΠ0 . . . pΠi+1 (B x))
TYPE_reci+1 P pU pΠ0 . . . pΠi+1 (Πi+1

i+1 A B) ≡ pΠi+1 A B (TYPE_reci+1 P pU pΠ0 . . . pΠi+1 A)
(λx : Elti+1 A. TYPE_reci+1 P pU pΠ0 . . . pΠi+1 (B x))

Figure 6. Codes

Γ,∆ ::= · | Γ, x :i A

A,B,M,N ::= �i | x |Mi N | λx :i A.M | Πx :i A.B

` Γ

Γ ` �i :i+2 �i+1

Γ ` A :j+1 �j Γ, x :j A ` B :i+1 �i j ≤ i

Γ ` Πx :j A.B :i+1 �i

Γ, x :i A `M :j B Γ ` Πx :j A.B :i+1 �i

Γ ` λx :j A.M :i Πx :j A.B

Γ `M :i Πx :j A.B Γ ` N :j A

Γ `Mj N :i B{x := N}

Γ `M :j B Γ ` A :i+1 �i

Γ, x :i A `M :j B

` ·

Γ ` A :i+1 �i

` Γ, x :i A

Γ ` A :i+1 �i

Γ, x :i A ` x :i A

Γ `M :i B Γ ` A :i+1 �i A ≡ B

Γ `M :i A

(λx :i A.M)i N ≡M{x := N} (congruence rules ommitted)

Figure 7. Typing rules of CCιω

Contrarily to previous translations, this translation needs
to be indexed by the universe level. This is because the code
for dependent products is not polymorphic in the universe
level, which must thus be inserted explicitly during the trans-
lation. Therefore, the index is here to keep track of the cur-
rent universe level.

Definition 21. The ad-hoc polymorphism translation [·]Ti∈N
from CCιω to CCω + TYPEi∈N is defined by induction on
terms as follows.

[�i]Tj
:= Ui

[x]Ti
:= x

[λx :j A.M]Ti
:= λx : [[A]]Tj

. [M]Ti

[Mj N]Ti
:= [M]Ti

[N]Tj

[Πx :j A.B]Ti
:= Π

j
i−1 [A]Tj

(λx : [[A]]Tj−1
. [B]Ti

)

[[A]]Ti
:= Elti [A]Ti+1

[[·]]T := ·

[[Γ, x :i A]]T := [[Γ]]T , x : [[A]]Ti

In general, Πji may not be defined so that we arbitrarily fix
Π
j
i := Π0

i whenever i < j. Note that the context translation is
not indexed, as the corresponding level is hardcoded in each
variable from the context.

Proposition 22 (Substitution lemma). For all terms M , N
and any variable x s.t. Γ, x :i A,∆ `M :j B, we have

[M{x := N}]Tj
≡ [M]Tj

{x := [N]Ti
}

Proof. By induction on the typing derivation ofM . Actually,
we need a much weaker condition than typing on M for the
theorem to hold, which amounts to checking that variables
are used at the correct universe level in the axiom case.

Theorem 23 (Typing soundness). If Γ ` M :i A then
[[Γ]]T ` [M]Ti

: [[A]]Ti
.

Proof. By induction on the typing derivation of M . Conver-
sion is interpreted by conversion itself, thanks to the substi-
tution lemma, and the other rules are staightforward.

Remark 24. When the source theory only features Π-types
and universes, it is not clear whether the translation pre-
serves consistency. Indeed, we have

[[ΠA :i �i. A]]Ti
≡ ΠA : TYPEi. Elti A

but then there is no obvious closed code A made out of
Π-types and universes to give to a term of the above type
in order to recover an inconsistency. For instance, trying to
feed it with the code of the impredicative encoding of falsity
simply gives back the same type.

This phenomenon does not occur as soon as the source
theory features an empty type ⊥, reflected in the codes as Fi
s.t. Elti Fi ≡ ⊥. In this case, we can instantiate a proof of
the above type with Fi and we obtain immediately a proof of
the empty type.

Theorem 25 (Consistency preservation). If the source the-
ory features an empty type⊥, the ad-hoc polymorphic trans-
lation preserves consistency.

We now turn to show that this translation allows to fully
observe the normal form of types by doing case analysis on
any term A : �i. We define formally what we mean by this
under the notion of type quoting below.

Definition 26 (Type quoting). A type quoting operator is
given in CCιω by the data described in Figure 8.

Theorem 27 (Type Quote). The [·]Ti
translation gives a

computational content to type quoting.

Proof. As all types are represented by codes, the vari-
ous quote operators are simply defined in terms of the
TYPE_rec operators.

[quotei P
~M]Ti+1

:=

TYPE_reci (λA : TYPEi. Elti ([P]Ti+2
A)) [~M]Ti+1

Preservation of typing and reduction is straightfoward, as
everything has been done to obtain this property.

The type operator can be used to define non-parametric
functions. For example, it becomes possible to prove

Σf : (ΠA : �. A→ A). f =ΠA:�. A→A id→ ⊥

by simply passing a function that is the negation on B and
the identity on other types. This shows that parametricity is
not built-in in CCω .

6. Formalization and Instrumentation
This section presents the framework for the COQ formaliza-
tion of some of the translations. We then describe the instru-
mentation of such translations as a COQ plugin.

6.1 Deep Embedding using De Bruijn Indices
We rely on the formalization of Pure Type Systems (PTS)
given by Siles and Herbelin (Siles and Herbelin 2012). It
consists in first defining untyped terms and then defining
the conversion and typing rules. Note that we could have
also used another approach based on induction-recursion
that defines directly well-typed terms as in the recent work
of Altenkirch and Kaposi (Altenkirch and Kaposi 2016).
However, it appears that this approach is a bit too rigid as it
forbids to use an untyped term during the translation, making
the translation very difficult to define in practice.

Terms are defined by an inductive type, where variables
are represented using De Bruijn indices and Sorts is an
inductive type representing the sorts (either �i or �i and ∗).
Inductive Term : Set :=

| Var : N→ Term
| Sort : Sorts→ Term
| Π : Term→ Term→ Term
| λ : Term→ Term→ Term
| App : Term→ Term→ Term
| Eq : ∀ (A t1 t2 : Term), Term
| refl : Term→ Term
| J : ∀ (A P t1 u t2 p : Term), Term.

The substitution of the n-th De Bruijn variable by N in M
is defined by recursion on M. We write it M [n 7→ N]. Conver-
sion in the calculus, written M ≡ N, is defined as the reflexive,
symmetric and transitive closure of the beta reduction, de-
fined as an inductive family. The type system is defined by
mutual induction with the well-formedness of contexts as

Inductive wf : Env→ Prop :=
| wf_nil : nil a
| wf_cons : ∀ Γ A s, Γ ` A : Sort s→ A::Γ a
where "Γ a" := (wf Γ)
with typ : Env→ Term→ Term→ Prop :=

| cVar : ∀ Γ A v, Γ `v→ A ↓ v ⊂ Γ→ Γ ` Var v : A

A,B,M,N ::= . . . | quote0 P N A | quotei+1 P M N0 . . . Ni+1 A

Γ ` P : �0 → �0 Γ ` pΠ0 : PΠ0 Γ ` A : �0

Γ ` quote0 P pΠ0 A : P A

Γ ` P : �i+1 → �i+1 Γ ` pU : P �i Γ ` pΠ0 : PΠ0
i+1

. . . Γ ` pΠi : PΠi
i+1

Γ ` pΠi+1 : PΠi+1 Γ ` A : �i+1

Γ ` quotei+1 P pU pΠ0 . . . pΠi+1 A : P A

where PΠi := Π(A : �i) (B : A→ �i). P A→ (Πx :i A.P (B x))→ P (Πx :i A.B x)
P

Π
j
i

:= Π(A : �j) (B : A→ �i). (Πx :j A.P (B x))→ P (Πx :j A.B x)

quote0 P pΠ0 (Π0
0 A B) ≡ pΠ0 (quote0 P pΠ0 A) (λx :0 A. quote0 P pΠ0 (B x))

quotei+1 P pU pΠ0 . . . pΠi+1 Ui ≡ pU
quotei+1 P pU pΠ0 . . . pΠi+1 (Πx :j A.B) ≡ pΠj A B

(λx : A. quotei+1 P pU pΠ0 . . . pΠi+1 (B x))
quotei+1 P pU pΠ0 . . . pΠi+1 (Πx :i+1 A.B) ≡ pΠi+1 A B (quotei+1 P pU pΠ0 . . . pΠi+1 A)

(λx : A. quotei+1 P pU pΠ0 . . . pΠi+1 (B x))

Figure 8. Type Quoting

| cSort : ∀ Γ s s’, Γ a → Ax s s’→ Γ ` Sort s : Sort s’
| cΠ : ∀ Γ A B s s’ s’’, Rel s s’ s’’→ Γ ` A : Sort s→

A::Γ ` B : Sort s’→ Γ ` Π A B : Sort s’’
| cλ : ∀ Γ A B s s’ s’’ M, Rel s s’ s’’→ Γ ` A : Sort s→
A::Γ ` B : Sort s’→ A::Γ ` M : B→ Γ ` λ A M : Π A B

| cApp : ∀ Γ M N A B , Γ ` M : Π A B→ Γ ` N : A→
Γ ` App M N : B[0 7→ N]

| Cnv : ∀ Γ M A B s, A ≡ B → Γ ` B : Sort s→
Γ ` M : A→ Γ ` M : B

... (* typing rules for equality *)
where "Γ ` t : A" := (typ Γ t A).

where A ↓ v ⊂ Γ means that the vth variable has type A in
Γ and Ax and Rel are two inductive families reflecting the
hierarchy on universes.

It is straightforward to extend Term to integrate other
types such as Σ-types, booleans and streams.

Now suppose S is a module defining the PTS for CCω
(plus dependent pairs and identity type) and T the same PTS
extended with booleans. The intensional functions transla-
tion introduced in Section 3 can be defined directly by in-
duction on S.Term.

Fixpoint tsl (t : S.Term) : T.Term :=
match t with

| S.Var v ⇒ T.Var v
| S.Sort s ⇒ T.Sort s
| S.Π A B ⇒ T.Σ (Π At Bt) Bool
| S.λ A M ⇒ T.Pair (λ At Mt) true
| S.App M N ⇒ T.App (π1 Mt) Nt

| S.Eq A t1 t2 ⇒ T.Eq At t1t t2t

| S.refl e ⇒ T.refl et

| S.J A P t1 u t2 p ⇒ T.J At Pt t1t ut t2t pt

end where "Mt" := (tsl M).

The typing soundness of the translation amounts to prove
the following theorem by mutual induction.

Theorem tsl_correctness :
(∀ Γ, Γ a → Γt a) ∧ (∀ Γ M A, Γ ` M : A→ Γt ` Mt : At).

In the additional materials accompanying this paper3, we
have formalized the intensional functions translation, the
intensional streams translation4 and ad-hoc intensional types
translation. In each case, computational soundness, typing
soundness and consistency preservation have been checked.

6.2 Instrumentation as a COQ Plugin
It is quite commonly agreed upon that type theory can be
difficult to work with formally, which is why proof assis-
tants were implemented in the first place. In particular, it is
not very convenient to prove new logical or computational
principles directly through the paper translation, let alone in
the deep embedding formalization. Luckily, our translations
rely on a rather generic target theory, so that we can use the
one underlying the COQ proof assistant.

This is where plugins shine in. A COQ plugin is simply
a program that, given a COQ proof term M , produces the
translation [M] as another COQ term. This is a shallow em-
bedding, and this process is orthogonal to the COQ formal-
ization which uses deep embedding instead. Typically, the
fact that [M] is still well-typed relies on the soudness the-
orem that lives in the metatheory rather than in the object
theory.

While there is no real point in implementing model trans-
lations in any formal foundations such as e.g. set theory,
here, the fact that we have an actual proof assistant at hand
makes the plugin quite useful. It allows to give the impres-
sion to the user that she is working transparently in the

3 https://github.com/CoqHott/Program-translations-CC-omega
4 Some bureaucratic lemmas about lifting of De Bruijn indices have been
admitted for the type system extended with streams. See Readme.md.

https://github.com/CoqHott/Program-translations-CC-omega

source theory, while it turns out everything is translated into
the target theory on the fly. In particular, typechecking re-
mains decidable by construction, and one can take advantage
of all of the facilities provided by the host language. This ef-
fectively prevents the necessity to reimplement a standalone
proof assistant for the source theory.

Writing a plugin can be cumbersome, for two unrelated
reasons. One has to know the internals of the COQ system,
which strongly restricts the amount of people able to do
it. Furthermore, a distinct term-translating program must be
written for every translation one wishes to internalize, which
implies that each translation requires a distinct plugin. For
instance, the forcing plugin described in (Jaber et al. 2016) is
quite different from the ones we implemented for this paper.
As of today, there is no such thing as a meta-plugin that
would allow to quickly prototype a term translation in COQ.
Remark 28. The type theory implemented by COQ and the
various extensions of CCω are slightly different, leading to
small discrepancies between the previously described trans-
lations and their actual instrumentation as a plugin. First, pa-
rameters do not appear in dependent pairs from the PTS pre-
sentation, while they do in COQ. Second, and more impor-
tantly, the management of universes in COQ is more complex
as it deals with universe variables and a graph of constraints.

In the remaining of this section, we describe the com-
mands provided by a plugin. First, any COQ term also per-
taining to the source theory can be translated into the target
theory automatically. Assuming some constant c : A, the
plugin command

Translate c.

produces a new constant cf : [[A]] that is added to the current
environment and whose body is the translation of the body
of c.

Moreover, it is possible to add new symbols to the system
through a translation. To do so, it is sufficient to provide
for any such symbol p : A its translation p• : [[A]]. This
is reflected in the COQ plugin by the command

Implement p : A.

which opens a new goal of type [[A]]. When it is solved,
the resulting term p• is used to automatically extend the
translation with a term p : A by defining [p] := p•.

Theoretically, this amounts to considering a typing rela-
tion `t in the translation layer defined by extending CIC with
the axiom Γ `t p : A. We easily get that if Γ `t M : B then
[[Γ]] ` [M] : [[B]] using the typing correctness of the trans-
lation, which justifies the abovementioned equiconsistency
result.

In practice, the plugin can thus be used to inhabit new ax-
ioms. For instance, for the case of the intensional functions
translation, we can add the negation of functional extension-
ality in the translation layer by providing a term

Implement neg_fun_ext :

(∀ A B, (f g : A→ B), (∀ x, f x = g x)→ f = g)→ False.

Such a plugin has been defined for the intensional func-
tions translation, the intensional streams translation and ad-
hoc intensional types translation. Code and examples come
with this article.

7. Future Work
As a first step, we wish to improve the plugins which are
only prototypes for the moment. This requires generalizing
the program transformations presented in this paper to the
entire language of COQ—defining it on all inductive types,
coinductive types and records. This way, it will be possible
to work on the translation layer without restriction and still
benefit from the new logical or computional principles avail-
able in this layer.

Regarding the type quote operator, an instrumentation as
a COQ plugin would require to define induction-recursion
in COQ. This is the subject of on-going work and has al-
ready been implemented in an experimental branch of COQ
8.5 developed by Matthieu Sozeau (https://github.
com/mattam82/coq/tree/IR). However, the extension of
the syntactic guard condition from inductive to inductive-
recursive definitions is still the subject of ongoing research.

Another possible line of work would be on the develop-
ment of a generic COQ plugin that allows users to define
their own compilation phase with a minimum effort—e.g.,
by defining only the translation on untyped terms in the deep
embedding—and generate automatically the associated plu-
gin for this transformation. This way, it will be possible to
experiment the frontier of what is provable in type theory at
a low cost investment.

But the most important is the development of more trans-
lations in order to realize axioms and logic principles. For
instance, we wonder if it is possible to find a presentation of
the setoid model as a program translation.

Acknowledgments
This work has been funded by the CoqHoTT ERC Grant
637339.

References
T. Altenkirch. Extensional equality in intensional type theory. In

Proceedings of LICS, Trento, Italy, July 1999.

T. Altenkirch and A. Kaposi. Type theory in type theory using
quotient inductive types. In Proceedings of POPL, 2016.

J.-P. Bernardy and M. Lasson. Realizability and Parametricity
in Pure Type Systems. In Foundations of Software Science
and Computational Structures, volume 6604, pages 108–122,
Saarbrücken, Germany, Mar. 2011.

J.-P. Bernardy and G. Moulin. A computational interpretation of
parametricity. In Proceedings of LICS, Dubrovnik, Croatia, June
2012.

https://github.com/mattam82/coq/tree/IR
https://github.com/mattam82/coq/tree/IR

J.-P. Bernardy, P. Jansson, and R. Paterson. Parametricity and
dependent types. In Proceedings of ICFP, Baltimore, Maryland,
USA, 2010.

J. Chapman. Type theory should eat itself. Electron. Notes Theor.
Comput. Sci., 228:21–36, Jan. 2009. ISSN 1571-0661.

P. Dybjer. Internal type theory. In S. Berardi and M. Coppo, editors,
Types for Proofs and Programs, volume 1158 of LNCS, pages
120–134. Springer Berlin Heidelberg, 1996. ISBN 978-3-540-
61780-8.

P. Dybjer. A general formulation of simultaneous inductive-
recursive definitions in type theory. J. Symb. Log., 65(2):525–
549, 2000.

M. Hoffman. Syntax and semantics of dependent types. In Seman-
tics and Logics of Computation, pages 241–298, 1997.

M. Hofmann. Extensional constructs in intensional type theory.
CPHC/BCS distinguished dissertations. Springer, 1997. ISBN
978-3-540-76121-1.

G. Jaber, N. Tabareau, and M. Sozeau. Extending Type Theory
with Forcing. In Proceedings of LICS, Dubrovnik, Croatia, June
2012.

G. Jaber, G. Lewertoski, P.-M. Pédrot, N. Tabareau, and M. Sozeau.
The Definitional Side of the Forcing. In Proceedings of LICS,
New-York, USA, July 2016.

B. Jacobs. Comprehension categories and the semantics of type
dependency. Theoretical Computer Science, 107(2):169 – 207,

1993.

C. Kapulkin, P. L. Lumsdaine, and V. Voevodsky. The sim-
plicial model of univalent foundations. arXiv preprint
arXiv:1211.2851, 2012.

Y. Lafont, B. Reus, and T. Streicher. Continuation semantics or
expressing implication by negation. Univ. München, Inst. für
Informatik, 1993.

Z. Luo. ECC, an extended calculus of constructions. In Proceed-
ings of LICS, Pacific Grove, CA, USA, June 1989.

C. Paulin-Mohring. Extraction de programmes dans le Calcul des
Constructions. Thèse d’université, Paris 7, Jan. 1989. URL
http://www.lri.fr/~paulin/PUBLIS/these.ps.gz.

V. Siles and H. Herbelin. Pure type systems conversion is always
typable. Journal of Functional Programming, 22(2):153–180,
Mar 2012.

The AGDA Development Team. Agda. 2015. URL http://wiki.
portal.chalmers.se/agda.

The COQ Development Team. The Coq proof assistant reference
manual. 2015. URL http://coq.inria.fr. Version 8.5.

B. Werner. Sets in types, types in sets. In Theoretical aspects of
computer software, pages 530–546. Springer, 1997.

http://www.lri.fr/~paulin/PUBLIS/these.ps.gz
http://wiki.portal.chalmers.se/agda
http://wiki.portal.chalmers.se/agda
http://coq.inria.fr

	Introduction
	Overview
	Intensional Functions
	Intensional Coinductive Types
	Intensional Types
	Ad-hoc intensional types
	Ad-hoc polymorphism

	Formalization and Instrumentation
	Deep Embedding using De Bruijn Indices
	Instrumentation as a Coq Plugin

	Future Work

